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The development of a two-dimensional viscous incompressible flow generated from an 
infinitesimally thin flat plate, impulsively started or uniformly accelerated normal to 
the free stream is studied computationally. An adaptive numerical scheme, based on 
vortex methods, is used to integrate the vorticity-velocity formulation of the Navier- 
Stokes equations. The results of the computations complement relevant experimental 
works while providing us with quantities such as the vorticity field and the unsteady 
forces experienced by the body. For the uniformly accelerated plate the present 
simulations capture the development of a number of centers of vorticity along the 
primary separating shear layer. This phenomenon has been observed in experimental 
works but has not been predicted by inviscid models. The present simulations suggest 
that this Kelvin-Helmholtz-type instability is driven by the interaction of primary 
and secondary vorticity near the tips of the plate and depends on the acceleration of 
the plate. 

1. Introduction 
The flow past a thin flat plate normal to the free stream is a classic example of 

bluff body flows. The formation of vortices at the sharp edges is of fundamental 
importance to the study of vortex generation and the develapment of separating 
shear layers. Prandtl (1904) was the first to study experimentally the flow behind 
a flat plate moving normal to itself. Later experimental studies of the phenomenon 
were presented by Anton (1939) and Wedemeyer (1956). Pierce (1961) employed 
spark shadowgraph techniques to produce the well-known photographic evidence 
of separation at sharp edges. Taneda & Honji (1971) used the aluminium dust 
method to provide visualizations of the flow past impulsively started and uniformly 
accelerated flat plates. On a similar note Pullin & Perry (1980) used dye in water 
to study the development of the separating shear layers past thin wedges. Lian & 
Huang (1989) used the hydrogen bubble technique to provide visualizations of the 
flow past accelerating plates. A more recent experimental investigation was presented 
by Coutanceau and Launay (in Dennis et al. 1993) for the impulsively started plate 
at moderate Reynolds numbers. They present extensive results for the early time 
development of the wake and they discuss the effect of blockage ratio in their 
experiments. 

Unlike other bluff body flows, the separation points for the flat plate are identified 
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with the edges of the pate. This simplification has attracted the interest of several 
theoretical studies. By appropriately estimating the production of circulation at the 
tips of the plate and assuming an otherwise inviscid evolution of the vorticity field, 
several investigators have presented analytical calculations for this type of flow (Villat 
1930; Wedemeyer 1961; Pullin 1978; Krasny 1991). 

Numerical simulations of the viscous flow past a flat plate are hindered by the 
presence of singularities of the Navier-Stokes equations at the tips of the plate. 
Past computations on this flow (Sarpkaya 1975; Chua 1990) relied on estimating 
the production of circulation at  the tips of the plate and subsequently shedding 
discrete vortices from the plate edges that are allowed to evolve and form a wake. 
Alternatively, fractional step Taylor-Galerkin (Lava1 & Quartapelle 1990; Tamaddon- 
Jahromi, Townsend & Webster 1994) and high-order finite difference (Najjar & Vanka 
1995) methods have been employed to solve the Navier-Stokes equations. These 
investigations deal mostly with long-time behaviour of the flow and global quantities 
such as Strouhal frequency and streamlines. Najjar & Vanka (1995) provide additional 
information for a wide range of Reynolds numbers such as the vorticity field and forces 
experienced by the body as well as discussion of the effect of three-dimensionality in 
such flows. These simulations employ grids that are refined near the surface of the 
plate, but do  not explicitly handle the singularity at the tips of the plate. 

On the other hand rigorous numerical schemes have been developed for the study 
of the steady state of the flow that is realized at low and moderate Reynolds numbers. 
Smith (1979) was the first to develop a numerical scheme which avoids the plate-tip 
singularity and presented steady-state results for low Reynolds numbers. Ingham, 
Tang & Morton (1991, referred to as ITM from here on) used an analytic solution to 
match the singularities at the plate edges and a second-order finite difference scheme 
to solve the vorticity/streamfunction formulation of the Navier-Stokes equations 
while handling the upstream and downstream boundary conditions with a method 
suggested by Fornberg (1980). Dennis et al. (1993) implemented a formulation in 
primitive variables that is not directly affected by the presence of the singularity, and 
presented an extensive study of the steady state of this flow. More recently In, Choi 
& Kim (1995) developed a procedure, similar to that employed by ITM, that treats 
the singularity at the tips of the plate analytically and then matches it to an outer 
finite difference solution. They used their methodology to conduct simulations for 
various angles of attack and for Reynolds numbers up to 30. Note that there seems 
to be a discrepancy among the reported results of the steady-state computations, 
with differences of up to 20% in estimating the length of the recirculating bubble. 
These differences may be attributed to the treatment of the boundary and far-field 
conditions by the various schemes described above. 

In the present work we conduct high-resolution simulations of the early time devel- 
opment of the wake behind a flat plate impulsively started or uniformly accelerated 
normal to the flow. Our scheme is based on the classical scheme of vortex methods 
(Chorin 1973; Leonard 1980), enhanced to account accurately for viscous effects 
(diffusion and no-slip boundary condition) and the singularities at the tips of the 
plate. The efficient implementation of the scheme of multipole expansions (Greengard 
& Rohklin 1987) allows us to implement large numbers of vortex elements (of the 
O( lo6)) to resolve a wide range of scales in the flows under consideration. The present 
results complement and extend the experimental work of Dennis et al. (1993) on the 
impulsively started flow. For the viscous flow past a uniformly accelerating flat plate, 
to the authors best knowledge, the present results are the first to verify computation- 
ally the formation of centres of vorticity along the primary separating shear layer. In 
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FIGURE 1. Definition sketch. 

an effort to clarify the discrepancies between past experimental results and theoretical 
investigations concerning the onset of an instability along the separating shear layers, 
we conduct a series of simulations and present a detailed description of the flow. We 
discuss the mechanism of formation of discrete vortices along the separating shear 
layer in terms of quantities such as the vorticity field that are difficult to obtain 
experimentally. Furthermore the results of the present simulations reveal similarity 
laws obeyed by the global quantities of the flow, such as the wake length and the 
drag coefficient, for the uniformly accelerated flow past a flat plate. 

2. The two-dimensional Navier-Stokes equations 

by the vorticity transport equation as 
Two-dimensional incompressible unsteady flow of a viscous fluid may be determined 

do 
- at + u * v w = v v 2 w  

where u(x, t )  is the velocity, w = o 2z = V x u  the vorticity and v denotes the kinematic 
viscosity. For flow around a flat plate, translating with velocity U,(t)  (figure 1) the 
velocity of the fluid (u) on the surface of the body (x ,~)  is equal to the velocity of the 
body : 

At infinity we have 

where U ,  is the free-stream velocity. Using the definition 
continuity (V - u = 0) it can be shown that u is related to o 
equation : 

~ ( X S ,  t )  = Uh(t )  

u(x)  -+ U ,  as 1x1 -+ a3 

v 2 u  = -v x 0. 

t la)  

(1b) 
of the vorticity and the 
by the following Poisson 

(2) 
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The velocity-vorticity formulation helps in eliminating the pressure from the un- 
knowns of the equations. However, for bounded domains it introduces additional 
constraints in the kinematics of the flow field and requires the transformation of the 
velocity boundary conditions to vorticity form. 

2.1. Particle (vortex) methods 
The present numerical method is based on the discretization of the above equations 
in a Lagrangian frame using particle (vortex) methods. The vorticity equation (1) 
may be expressed in a Lagrangian formulation by solving for vorticity-carrying fluid 
elements (x,) based on the following set of equations: 

d o  
__ = u(xa,t), - = v V2W.  
dxa 
dt dt ( 3 )  

In order to enforce the boundary conditions a fractional step algorithm is imple- 
mented. This algorithm is described in $4. 

In the context of particle methods it is desirable to replace the right-hand side of 
(3) by integral operators. These operators are discretized using the locations of the 
particles as quadrature points so that ultimately ( 3 )  is replaced by a set of ODES 
whose solution is equivalent to the solution of the original set of equations. To this 
effect the velocity field may be determined by the vorticity field using the Green’s 
function formulation for the solution of Poisson’s equation (2). 

where Uo(x, t) is the solution of the homogeneous equation with the no-through-flow 
boundary condition enforced , and K ( z )  = z / (z I2 .  The use of the Biot-Savart law to 
compute the velocity field guarantees the enforcement of the boundary condition at 
infinity. 

For the diffusion equation, the Laplacian operator may be approximated by an 
integral operator (Degond & Mas-Gallic 1989) as well so that 

V2W = 1 G(lx - YI) b ( X )  - 4 Y ) l  dY ( 5 )  

where, in this paper, G is taken to be the Green’s function kernel for the diffusion 
equation in an unbounded domain. The boundary condition (la) is enforced by 
formulating the physical mechanism which it describes. The surface of the plate is the 
source of vorticity that enters the flow. A vorticity flux ( a W / a n )  may be determined on 
the boundary in a way that ensures (la) is satisfied (Koumoutsakos, Leonard & Pkpin 
1994a, referred to as KLP hereinafter). We implement a fractional step algorithm that 
allows for the calculation of this vorticity flux and its diffusive distribution into the 
flow via an integral operator. We replace then, the right-hand side of ( 3 )  with the 
following set of equations: 

where the kernel H is developed in KLP. In vortex methods, the vorticity field is 
considered as a discrete sum of the individual vorticity fields of the particles, having 
core radius E ,  strength r ( t )  and an individual distribution of vorticity determined by 
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the function q,  so that 

When this expression for the vorticity is substituted in (6) the singular integral 
operators K , G  are convolved with the smooth function q, and are replaced by 
smooth operators K,, G,. In the present study the Gaussian smoothing was used: 

and the respective forms of K ,  and G, are given by 

The error in vortex methods may be described as a combination of the errors made 
by the smoothing of the Biot-Savart and the diffusion kernel and the discretization 
on the location of the particles via a quadrature rule. The error in the vorticity field 
induced by the approximation of the convection is expressed as 

Smoothing error + Discretization error = O(em) + O(hn/e") 

Smoothing error + Discretization error = O ( P )  + O(hfl/efl+') 

(9) 

and by the diffusion (Degond & Mas-Gallic 1989) as 

(10) 

where h is a characteristic distance between the particles and the coefficients m and n 
depend on the properties of the smoothing function qe (for the Gaussian m = 2 and 
n = a). The convergence properties of the method require that the particles overlap 
( h / e  < 1) at all times. The theoretical estimates (10) and practice dictate that this 
constraint is even more necessary due to the approximation of the diffusion by the 
scheme of Particle Strength Exchange. 

The integrals are discretized using a quadrature having as quadrature points the 
locations of the particles. Assuming that each particle occupies a region of area h2 
and that the shape of the body is discretized by M panels then algorithmically the 
method may be expressed as: 

The Lagrangian representation of the convective terms avoids many difficulties asso- 
ciated with its discretization on an Eulerian mesh such as excess numerical diffusion. 
However, the straightforward method of computing the right-hand side of (1 1) for 
every particle requires O ( N 2 )  operations for N vortex elements. This is an N-body 
type of problem which appears in several fields of engineering and science. In order 
to reduce this cost Barnes & Hut (1986) presented an algorithm for gravitational 
interactions that has an operation count of O(N1ogN). Greengard & Rohklin (1987) 
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presented an alternative scheme, applicable to a variety of problems involving inte- 
gral equations, with computational cost of O ( N ) .  In the present scheme the efficient 
vectorization (Koumoutsakos 1996) of the O ( N )  scheme allows computations with 
one CPU min per velocity evaluation for one million vortices on a single processor 
of a CRAY YMP. 

Note that in the present method the number of particles ( N )  used in the simulations 
is a function of time, as the particles adapt to resolve the vorticity field that is 
generated around the surface of the plate and is subsequently convected and diffused. 
New computational elements are added as needed using the remeshing procedure 
discussed in $3. 

3. Remeshing 
The accuracy of the present method relies on the accuracy of the quadrature rule 

as information needs to be gathered from the possibly distorted (due to the strain 
of the flow field) particle positions. A key aspect of the present algorithm is the 
implementation of a remeshing procedure to ensure the regularity (i.e. overlap) of 
the Lagrangian computational elements. This regularity is not only necessary for 
the accuracy of the quadrature approximation of the integrals but furthermore it 
is dictated by the numerical approximation of the viscous effects in the present 
scheme. More specifically, the scheme of PSE requires that a set of zero-strength 
particles always surrounds the vortical regions of the flow to properly approximate 
the diffusion process. The enforcement of the no-slip boundary condition via the 
diffusive distribution of the vorticity flux from the surface of the plate requires that 
computational elements are always surrounding the surface of the body in order to 
perform an accurate quadrature of the related integral operator. As the computational 
elements in vortex methods are inherently linked to the vorticity field, they have to 
adapt as the vorticity field is convected and diffused. The remeshing procedure 
guarantees that the particles overlap at all locations of the domain. It ensures that the 
area surrounding the surface of the plate is not depleted of particles and that ‘ghost’ 
particles always surround the regions of vorticity to properly account for diffusion. 

In order to remesh on the distorted Lagrangian grid (particles) we overlay a 
uniform rectangular grid. It is necessary to accurately interpolate the old vorticity 
field ( w )  onto the new grid initially equi-spaced particle locations (Z) - that replace 
the (distorted) particle locations (x). After remeshing, the equi-spaced rectangular 
grid cell centres become the new particle locations. The new particle strengths are 
determined using an appropriate interpolation kernel A so that: 

M 

where f , r denote the new and old particle strengths respectively. 
Depending on the order ( k )  of the interpolation we may write that 

G(Z) = w(x) + 0 ( h k ) .  (13) 

The process is not of the usual interpolation type as it is complicated by the fact 
that the particles are disordered. The basic analysis of interpolation of this type is 
given by Schoenberg (1973). He has developed interpolation formulas that attempt 
to minimize the effect of the grid disorder on the interpolated quantity. If h is the 
spacing of the new grid setting u = Ixl/h then interpolation kernels of this type are: 
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FIGURE 2. Remeshing (a)  in the unbounded domain, ( b )  near the surface of the plate. 

zeroth-order interpolation 

1 i f0  < u ,< 1 /2  
0 otherwise, 

which is the nearest grid point (NGP) interpolation 
linear interpolation 

I - u  i f 0  < u < 1 
otherwise, 

which is usually the choice in Cloud in Cell schemes; 
second-order interpolation 

i f 0  < u < 1 /2  
Az(u) = (1 - u)(2 - u ) / 2  if 1/2 < u < 3 / 2  (16)  CU2 otherwise ; 

Everett’s formula of third order 
(1 - .2)(2 - u ) / 2  i f 0  < u < l  

n 3 ( u ) =  ( l - u ) ( 2 - ~ ) ( 3 - ~ ) / 6  i f 1  < u < 2  (17) 
i o  otherwise. 

In our algorithm we use A 2 ( u )  to perform this remeshing, conserving the circulation 
and the linear and angular momentum of the vorticity field. The two-dimensional 
remeshing formulas are Cartesian products of their one-dimensional counterparts. 
The interpolation kernel is defined then as 

& > Y )  = 4 X M Y ) .  (18) 

Using A 2 ,  each particle located in a cell ( I , J )  affects 9 mesh points, presented as 
shaded areas in figure 2(a).  The.frequency of remeshing depends on the strain field 
of the particular flow field. In the present study the frequency of remeshing was 
variable throughout the course of the simulations, depending on the conservation of 
the moments of the vorticity field. Simulations were also carried out with a fixed 
remeshing frequency whose value was decided empirically. A convergence study in $5 
described the effect of remeshing on the results of the simulations. 

3.1. Remeshing in a bounded domain 
When boundaries are present the remeshing procedure is complicated as the new 
mesh-points have to be outside the body. It is evident then that the schemes employed 
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for an unbounded domain have to be modified for particles that are located in an 
( Z , J )  cell which is adjacent to the boundary. Here we devise a scheme to overcome 
this difficulty. It requires again 9 points and conserves the same quantities as for the 
unbounded case. In figure 2(b) the nine cells affected by a cell adjacent to the boundary 
are depicted. The interpolating kernel is again the product of two one-dimensional 
forms but now 

with AI = 112 and 
n(x7 Y) = AI(x)AJ(y) (19) 

1 - 3/2 v + 1/2 v2 for cells J 
v (2  - v )  for cells J + 1 

for cells J + 2 
0 for all other I 

where v = (y - y')/h and J denotes the off-boundary direction. 

(20) A J = {  v ( v  - 1)/2 

4. Boundary conditions 
The no-slip boundary condition accounts for the generation of vorticity on the 

surface of the body. The surface of the body acts as a source of vorticity (Lighthill 
1963; Schmall & Kinney 1974) and the task is to relate this vorticity flux on the 
surface of the body to the no-slip condition. This process is described in KLP for non- 
zero-thickness bodies and has been implemented in the simulation of the flow past an 
impulsively started cylinder (Koumoutsakos & Leonard 1995). Here we extend this 
technique to the case of a zero-thickness flat plate by properly relating the kinematic 
and dynamic constraints of the flow. 

4.1. A fractional step algorithm 
In the present formulation, (1 1) are not integrated simultaneously in time but instead 
a fractional step algorithm is employed. We solve successively for the convective and 
for the viscous part of the equations and at each substep we enforce the relevant 
kinematic (no-through-flow) and dynamic (no-slip) boundary conditions. 

To illustrate our computational scheme, let us assume that at the nth time step 
(corresponding to time t - 6 t )  the vorticity field has been computed and we seek to 
advance the solution to the next time step (time t ) .  The following two-step procedure 
is implemented : 

Step 1 :  Convection 

for 
Using as initial conditions the vorticity field at t - 6 t  (w"(x", n6 t ) )  we need to solve 

aw - + u - v w = o .  
at 

This set of equations is complemented with the no-through flow boundary condition 

u(xs7 t )  * R = U,(t)  * n (20b) 

where R denotes the normal on the surface of the plate. Without loss of generality 
we assume that the plate surface lies along the y-axis at x = 0 and between -L/2 ,< 
y < L/2. In order to enforce the no-through-flow boundary condition a vortex sheet 
of strength K is distributed on the plate surface. The strength of this vortex sheet is 
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where u,(y) is the velocity normal to the surface of the plate. The above integral 
equation is singular as it admits more than one solution. A unique solution is 
obtained by enforcing the conservation of circulation (note that in airfoil theory K is 
uniquely determined by enforcing the Kutta condition) 

where r is the total circulation in the wake. For the symmetric flows examined herein 
r is nominally zero. 

In order to solve the set of equations (21) we introduce the transformation cos(8) = 
-2y/L and use the orthogonality of a Fourier series expansion for ~ ( 8 )  over the 
interval [O,n] (Batchelor 1967) to obtain that at each instant of time 

where 

u,(8) cos(m8)dQ for m = 0,1,. . 

and C is determined by enforcing the conservation of circulation (21b): 

21" c = - +A1.  
71L 

A finite number of terms ( P )  is retained in the infinite series (22a) in the numerical 
implementation of this method. Note that the above expression for ~ ( 0 )  has the 
singularity of the vortex sheet at the tips of the plate built-in. 

The velocity field at the locations of the particles (.(xi)) is then calculated as 

where 5 = t 6,. 
Algorithmically Step 1 may be expressed as 

for i = 1 . . . , N ( n  s t ) .  
In order to numerically integrate (24) we use an Adams-Bashforth scheme of order 

2. As in the following sub-step, the viscous effects are accounted for, by modifying 
the strength of the particles without modifying their locations (as is the case in the 
method of random walk (Chorin 1973)) we have 

(25) x t l + l  I - - x: + +(2u(x : ,n6 t )  - u(x:,(n - 1 ) s t ) ) .  

At the end of Step 1 a vorticity field o' = o(x, ( n  + 1/2)6t) has been established in 
the flow field. 
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Step 2: Diflusion and vorticity creation 
In this stage we solve for the viscous part of the equations and the boundary 

conditions. Using as initial conditions the vorticity field established at the previous 
sub-step we solve 
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dw 
- = v v20  
dt 

while enforcing the no-slip boundary condition 

u(xs, t) * s = U,(t) * s (26b) 

by appropriately determining a vorticity flux (aw/dn) and hence a Neuman-type 
boundary condition for the vorticity field on the surface of the plate. 

First, in order to solve for the diffusion of the vorticity field we employ the scheme 
of Particle Strength Exchange (Degond & Mas-Gallic 1989). In this scheme the 
diffusion operator is approximated by an integral operator that, when discretized 
using as quadrature points the locations of the particles, amounts to the exchange of 
circulations of the individual vortex blobs according to 

dTj v h2 N ( t )  

dt f 2  
_ _ - -  - Err; - rr] G,( I$+' - x?" I). 

j=1 

When Gaussian vortex blobs are implemented it has been observed (Koumoutsakos 
1993) that optimum results are obtained with an Euler-type integration scheme with 
time step 6 t  = e2/2v so that the particle strengths are updated according to 

Once the particle strengths and locations have been updated (28) and (251, respec- 
tively, a tangential velocity u,(y) is observed on the surface of the plate. In order to 
enforce the no-slip boundary condition in the context of the present algorithm we 
need to eliminate this tangential velocity induced by the vortices in the wake, while 
maintaining the no-through-flow condition. By taking the limit of (21a) a vortex sheet 
of strength y is observed on each side of the plate as 

The vortex sheet (y) is composed of the spurious tangential velocity that needs to be 
nullified and of the singularity distribution ( K )  used to enforce the no-through-flow 
boundary condition. This process is depicted schematically in figure 3. In order to 
effect its dual purpose the vorticity associated with the sheet is introduced diflusively 
into the flow. As discussed in further detail in KLP, this process would modify the 
circulation of the flow and hence it can be related to a vorticity flux as 

This relationship helps us link the kinematic and the dynamic description of the flow 
in the present algorithm. We consider the vorticity flux to remain constant over each 
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3. Sketch showing the distribution of the vorticity flux to the vortices in the domain to 
the no-through flow (top) and no-slip (bottom) boundary conditions over each panel of the 

time step and we require that 

The vorticity flux helps establish a vorticity field on each side of the plate that 
eliminates the spurious tangential velocity ut while simultaneously enforcing the no- 
through flow boundary condition via (29) and (31). This is achieved by solving the 
Neumann problem for the diffusion equation using an integral formulation (KLP). 

The solution may be expressed as 

where ~ ( x ,  t )  is determined by the solution of 
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We use an asymptotic expansion for small 6t  to calculate the integral in (33) explicitly. 
The surface of the plate is divided into M equidistant panels of size d, centred at 
ym. Over each panel we assume a piecewise-constant distribution of the vortex sheet 
and the associated vorticity flux. The integral operator in (32) is discretized using 
as quadrature points the locations of the particles so that their strength is updated 
according to the following algorithm: 

m= 1 

where 

For further details the reader is referred to KLP. The influence of the vortex sheet 
decays with the distance from the plate so only the particles in the neighbourhood of 
the plate are affected, hence the computational cost of this step scales as M log N .  

4.2. On the simultaneous enforcement of the no-through--ow and no-slip conditions 
The vortex sheet strength distribution ( y )  in (29) is such that the introduction of 
vorticity in the flow field via the associated vorticity flux (31), (35) does not violate 
the no-through-flow condition. Owing to this fortuitous result, no through flow is 
enforced at the end of both sub-steps of the fractional step algorithm presented in 
this Section. We have exploited this result in order to reduce the computational cost 
of our method, while maintaining its accuracy. This is facilitated by the use of an 
Adams-Bashforth scheme for the advancement of the particle locations. 

During the course of the simulation we explicitly enforce the no-through-flow 
condition only at the end of the second sub-step, along with the no-slip condition. 
One may observe then that at the beginning of the following convection sub-step 
(during the calculation of the Biot-Savart integral) the velocity induced by the 
vortices on each other is always computed in a no-through-flow configuration. Hence 
the motion of the vortices can be computed, using an Adams-Bashforth integration 
formula, without explicitely accounting for the surface singularity. However as soon 
as the vortices are displaced a slip and through velocity appear on the surface of the 
plate. At the end of the second sub-step however the two components of the spurious 
velocity are eliminated, as discussed above, and this procedure is repeated during the 
course of the simulation. 

We have conducted simulations that enforce the no-through-flow at both sub-steps 
by explicitly accounting for the vortex sheet singularity (23) to enforce the no- 
through-flow condition. Their results are indistinguishable from the results obtained 
using the strategy described in the previous paragraph. As the second option reduces 
the computational cost it has been employed in the majority of our simulations and 
particles were not observed to cross the surface of the plate. An equivalent result, 
regarding the simultaneous enforcement of the no-slip and no-through-flow boundary 
conditions in the context of this algorithm, is valid for the case of the flow past bodies 
of non-zero thickness (Pkpin 1990). 



The viscous ,flow normal to an accelerated flat  plate 189 

Note that when an integration scheme requiring multiple steps (such as Runge- 
Kutta) is used to integrate (24),  the explicit use of the surface singularity (ic) is 
necessary to enforce no through flow after the first step of the integration. Also as 
(24)  refers to the Lagrangian locations of the particles, a Runge-Kutta scheme of 
order 2 is used to integrate the particle locations after remeshing, using the procedure 
described in 94.1. 

4.3. Initialization 
Initially the particles are placed in the centre of the cells of a rectangular equi-spaced 
grid, surrounding the flat plate. At time t = 0- the strength of these particles is set to 
zero. At the onset of motion ( t  = Of), a through flow is observed on the surface of 
the plate - constant along its surface and equal to Uh(O+) .  In order to counteract this 
through flow we introduce a vortex sheet on the surface of the plate whose strength 
is (22a) 

As initially the particles have zero strength (null vorticity field) there is no contribution 
from the Biot-Savart integral. According to the fractional step scheme described in 
$4.1, we may compute a velocity field at the location of the particles based on the 
strength of the vortex sheet. Note however that this would have no effect on the 
vorticity field as during this step the strength of the vortices remains constant and 
equal to zero. The tangential velocity (u,) induced on the surface of the plate from 
the vortices in the wake is zero as well so (29)  for the vortex sheet ( y )  reduces to 

(37) 

In the following sub-step the vortex sheet is diffused into the flow field, as described 
in the second part of our algorithm (35). The vortices surrounding the plate attain 
a strength such that they induce a normal velocity u, to counteract the spurious 
through velocity, while the no-slip boundary condition is trivially satisfied (see also 
figure 3). After the vortices have acquired a non-zero strength the simulation proceeds 
as discussed in the previous subsection. 

1 y ( x  = 0-, y )  = - p ( y ) ,  y(x = O + , Y )  = +$C(y). 

5. Results 
In this section we present the results of our simulations for the early stages of the 

evolution of the flow behind an impulsively started and uniformly accelerated flat 
plate. We conduct a convergence study of our numerical method and we compare 
our results with related theoretical and experimental works, using diagnostics such as 
the streamlines, the vorticity field, the length of the recirculating wake and the drag 
coefficient of the flow. For the case of the uniformly accelerated plate our results 
confirm an instability that has been observed in related experimental studies and we 
present a series of calculations and diagnostics to quantify our observations. The 
results reveal a similarity law for the uniformly accelerated flows. 

5.1. The impulsively started JZat plate 
The first part of our work concerns simulations for an impulsively started flat plate 
over a range of Reynolds numbers. The Reynolds number ( R e )  of the flow is defined 
based on the length of the plate ( L )  (figure l), as 

U L  Re = __ 
V 
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Convergence study of the influence of ( a )  the number of terms ( P )  in the Fourier series 
expansion and ( b )  M (number of panels), on the computation of K .  

ime ( t )  is non-dimensionalized for the impulsively started case as 

Ut 
L '  

T = -  

The drag coefficient ( cD)  of the body is given then by 

2Fb * ê , cD = -~ u; L 
where Fb is calculated by 

o x x d x  = 5 kri xi  x ê , 
d 

i= 1 
F b  = dt d,, dt  

(39) 

where x i  = (xi,yi) is the location and Ti the strength of the vortices in the wake 
(Koumoutsakos & Leonard 1995). 

The main features of an impulsively started flow are common for all the Re that 
are presented in this work. Two counter-rotating vortices appear in the wake. They 
are fed by a shear layer emanating from the tips of the plate and induce a secondary 
vorticity region in the rear of the plate at the early stages of the flow. At later times 
the feeding shear layers are spread by the action of diffusion and eventually become 
part of the vortex while the secondary vorticity region is weakened. Note the absence 
of any secondary separation to the rear of the plate in the present simulations. 

Vorticity contours of (0, k0.5, fl.O,f1.5, k2.0, f4 .0 , .  . .) and streamlines of 
(0, k0.2, f0 .4 ,  . . .) are presented. We discuss the evolution of the flow and we compare 
with several experimental works and related numerical solutions of the steady state 
of the flow. 

5.1.1. Convergence study 
The accuracy of the numerical solution was examined by varying the parameters of 

our computational scheme, such as the blob size, the time step, the number of panels, 
the number of terms kept in the Fourier series expansion for IC and the remeshing 
frequency. The first two parameters in this list were linked as optimum results were 
obtained for the approximation of the diffusion operator when using a core radius 
such that 

6 = (26t/Re)li2. (42) 
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A particle overlap ratio of h / c  "N 0.8 was maintained. To monitor the convergence 
we used the streamlines, velocity profiles, the vorticity field and the drag coefficient 
of the plate. 

First we examined the effect of the number of terms ( P )  kept in the expansion 
(22a) for K and the effect of the number of panels ( M )  used in the enforcement of 
the no-through-flow boundary condition. We considered the impulsively started flow 
at R e  = 126, and we conducted a high-resolution simulation until T = 8.0. In order 
to further continue the calculation we need to perform the two sub-steps discussed 
in 34. The effects of P and M on the accuracy of the calculation is demonstrated 
by considering the solution of (22a) during the first sub-step of our algorithm. A 
particular normal velocity profile ( u l l ( y ) )  is established after the particles are convected 
due to their mutual interaction and the task is to determine a vortex sheet IC so as to 
nullify this through flow on the surface of the plate. In figure 4(a) we keep constant 
the number of panels used to compute the right-hand side of (22a) and we observe 
the convergence of the solution of the equation as we vary the number of terms in 
the expansions. In figure 4(h) we maintain a relatively high number of terms in the 
expansions and we vary M .  Note that the convergence is slower at locations near 
the tips of the plate due to the singularity of the velocity field. In order to examine 
the effect of the temporal and spatial discretization of our scheme, the computations 
were run with time steps ( a t )  of 0.005,0.02,0.032 and 0.05. Both spatial and temporal 
refinement are tested with these cases due to the link between the time step and core 
radius f (42). In figure 5 ( a )  we present the vorticity field (top part) and the streamlines 
of the flow at T = 8. As expected the streamlines exhibit a faster convergence rate, 
suggesting that the vorticity field is a more reliable diagnostic for the accuracy of the 
numerical scheme. Of particular interest is the behaviour of the recirculating bubble. 
One may observe that the bubble length and centre of the recirculating vortex are 
relatively insensitive to the refinement of the calculation (see also figure 5b) despite 
the discrepancy in the details of the vorticity contours as the resolution increases. 
In figure 5(c )  we present the magnitude of the velocity field along the centreline of 
the plate. One may observe the faster convergence rate of the velocity field, in the 
upstream (practically inviscid) part of the domain. In figure S(d) we show the results 
of our convergence study on the drag coefficient. Note that an order of magnitude 
decrease of the resolution of the flow results only in a 5% loss of accuracy in the 
calculation of the drag coefficient. 

As a further verification test of our scheme, a flat plate aligned with the flow at 
Re = 500 was simulated to T = 5.0 for comparison of the drag coefficient with 
triple-deck analysis. Figure 6 reveals convergence of our unsteady solution to the 
steady triple-deck prediction (Messiter 1970; Stewartson 1974) given by 

(43) 

The parameters for this simulation were: 6 t  = 0.005, P = 50, M = 220, with other 
values as specified above. 

Finally in order to test the effect of the remeshing frequency we conducted a series 
of simulations for the early stages of the development of the flow at R e  = 126. We 
maintained a time step of 6 t  = 0.005 and we remeshed every 6, 12 and 24 steps. The 
effect of remeshing on the drag coefficient is shown in figure 7. Note that remeshing 
even every 24 time steps produced relatively accurate results. The high-frequency 
oscillations observed on the drag coefficient are attributed to the effect of remeshing 
on the linear impulse of the flow. That is, the remeshing scheme conserves the linear 
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FIGURE 5(a,b). For caption see facing page. 

impulse, but not its time derivative (i.e. the drag coefficient). It appears, however, that 
this effect does not affect the global characteristics of the flow. During our calculations 
remeshing was performed as dictated by conservation of the global quantities of the 
flow field, such as circulation and the y-component of the linear impulse but we 
always maintained a maximum remeshing frequency of 10 steps. 

The parameters of the computations for the simulations presented herein were 
chosen based on the convergence study conducted above and are summarized in 
table 1. 

The present results concern the unsteady, symmetric early time development of the 
flow. Note however, that no symmetry constraint was imposed in our computations. 
In fact the preservation of flow symmetry serves as evidence for the accuracy of the 
results of our simulations. 
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FIGURE 5 .  Effect of the variable resolution on ( a )  the streamlines (bottom part) and vorticity 
contours (upper part) of the flow at T = 8, ( h )  the evolution of the recirculating bubble length, (c) 
the velocity profile along the axis of symmetry ( y  = 0) of the plate, ( d )  the evolution of the drag 
coefficient. 

5.1.2. Re = 20 
The development of the vorticity field and the streamlines presented in figure 8. One 

may observe that at earlier times ( T  < 2) the flow develops rapidly with the primary 
vortices emanating from the tips of the plate introducing a secondary vorticity in the 
rear of the plate. However beyond a certain time ( T  = 6) the flow remains almost 
unchanged as a stable configuration is assumed by the primary and the secondary 
vorticity and the length of the recirculating bubble remains unchanged beyond this 
time. 

An extensive experimental study of this flow at Re = 20 has been carried out by CL 
(Dennis et al. 1993). In figure 9 we overlay the streamlines of the computations on the 
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FIGURE 7. Effect of remeshing on the evolution of the drag coefficient. 

Re 6 t  P M 
20 2 x 10-2 30 50 
40 1 x 10-2 40 60 

126 5 x 10-3 75 100 
1000 1 x 10-3 100 650 

TABLE 1. 

streaklines reported by Dennis et al. with b = 0.15. A discrepancy appears especially 
at the later times of the evolution of the flow. Note that a finite blockage ratio 
and the possible influence of three-dimensional effects distinguishes the experimental 
results from the present calculations. In figure 10 we present a comparison of the 
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FIGURE 9. Comparison of instantaneous streamlines (computations) ( b  = 0) and streaklines 
(Dennis et al. 1993) (b  = 0.15) for an impulsively started plate at Re = 20. 

velocity profiles at the rear axis of the plate as calculated by the experiments and 
the computations. Note that for the early time ( T  = 0.5) when the channel walls do 
not significantly affect the flow good agreement is observed between the experimental 
and the computational results, especially outside the recirculating region. The finite 
blockage ratio is manifested in that the experimental value of the maximum velocity 
is consistently larger than the respective computational results (corresponding to an 
infinite domain). The agreement deteriorates with time with the experimental values 
consistently predicting a smaller value for the length of the recirculating region. Note 
that a similar behaviour has been observed by Coutanceau & Bouard (1977) for the 
case of a circular cylinder. In figure 11 we present the time evolution of the length of 
the recirculating region. The results of Dennis et al. for two different blockage ratios 
(b  = 0.1 and b = 0.15) suggest that the recirculating bubble would be larger for an 
infinite domain than for a plate in a channel and seem to validate the results of the 
present computations. We present also the experimental results of Taneda & Honji 
(1971) for similar Re (Re = 18.1 and 24.3). Note that for early times all experimental 
and computational results are in good agreement. However Taneda & Honji’s results 
for Re = 24.3 seem to overpredict the recirculating bubble as compared with the other 
works. As suggested by Taneda & Honji (1971), this discrepancy may be attributed 
to the three-dimensionality that is observed in their experiments. Their results at 
Re = 18.1 seem to be in good agreement with the present computations although 
they are not extended to the steady state regime. 

In figure 12 we present the vorticity field as computed by the present method 
at T = 11.5 and as computed by the steady-state calculations of Dennis et al. 
(1993). The discrepancy in the results suggest that the vorticity field relaxes much 
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Comparison of experimental and computational results. 

slower to the steady state than diagnostics such as the bubble length and the drag 
coefficient. However discrepancies of similar magnitude have been observed with 
other diagnostics presented by Dennis et a / .  (1993). For example in figure 11 we 
show the steady-state length of the recirculating bubble as computed by Hudson & 
Dennis (19851, Dennis et al. (1993). A to 20% discrepancy appears between the 
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FIGURE 12. Vorticity field of an impulsively started plate at Re = 20. Top part: Steady state 
(Dennis et al. 1993), Bottom part : T = 11.5 (present results). 
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FIGURE 13. Evolution of the drag coefficient behind an impulsively started flat plate, for Re = 20, 
40, 126, 1000. Comparison with steady-state results (Dennis et al. 1993). 

steady-state computations and the asymptotic state of the present calculations. ITM 
have carried out experiments with b = 0.067 that are in excellent agreement with 
their steady-state calculations as well as with the asymptotic behaviour of the present 
simulations. The observed discrepancies among the various steady-state calculations 
may be attributed mainly to the different treatment of the far-field condition. Far- 
field boundary conditions may be viewed as introducing a ‘numerical channel’ in the 
simulation of the flow around the flat plate. Note however that ITM use a far-field 
condition that has been devised by Fornberg (1980) and has been shown to render 
accurate results for a variety of flows (Fornberg 1980; Natarajan, Fornberg & Acrivos 
1993). In the present scheme the far field condition is not interfering with the physics 
of the problem as it is explicitly enforced by the use of the Biot-Savart law to compute 
the velocity field. 

In figure 13 the drag coefficient as computed by the present scheme is observed to 
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FIGURE 14. Vorticity (lower part) and streamline (upper part) contours for an impulsively started 
flat plate at Re = 40. 
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FIGURE 16. Vorticity field of an impulsively started plate at Re = 40. Top part: Steady state 
(Dennis et al.), Bottom part : T = 21.0 (present results) 

approach the value of the steady-state results as computed by Dennis et al. (1993). The 
drag coefficient was computed by Dennis et al. by considering the momentum balance 
of the fluid between the plate and any surrounding contour. They observed that the 
drag coefficient is constant, provided that the surrounding contour is not approaching 
the end of the computational domain. The results of the present computations for 
the drag coefficient are in a far better agreement with the steady-state predictions 
than the results for the length of the recirculating bubble. This is attributed to the 
fact that unlike the length of the bubble the drag coefficient is a global quantity of 
the flow and hence not so sensitive to the details of the flow field. 

5.1.3. Re = 40 
The evolution of the vorticity field and the streamlines for Re = 40 is presented 

in figure 14. As the Re increases stronger vortices are formed at the tips of the plate 
thus inducing a stronger secondary vorticity the rear of the plate. This secondary 
vorticity is trapped in the recirculating region of the flow and is eventually eliminated 
by the effects of viscosity as the centres of the pimary vortices move away from 
the centre of the plate. The evolution of the length of the bubble is presented in 
figure 15 and is compared with the experimental results of Taneda & Honji (1971) 
for Re = 41, and the steady-state results of Dennis et al. (1993). Excellent agree- 
ment of the computational and experimental results is obtained for the early times. 
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FIGURE 18. Comparison of instantaneous streamlines (computations) (Re = 126, b = 0) and 
streaklines (Taneda & Honji 1971) (Re = 125.4, b = 0.026) for an impulsively started plate at  
T = 4.0. 

Taneda & Honji (1971) have observed that their flow would become asymmetrical 
at about T = 10. The steady-state results of Dennis et al. predict a recirculating 
bubble which is about 20% larger than the value predicted (experimentally and 
numerically) by ITM and the results for the asymptotic state of the wake of the 
present calculations. The theoretical and experimental steady-state results of ITM 
are in excellent agreement with the predictions of the present simulations. Note that 
the present formulation and the one employed by ITM differ significantly. Ours is 
an unsteady computation with an explicit handling of the far-field boundary condi- 
tion whereas ITM conduct steady-state simulations, employing analytic forms for the 
enforcement of the far-field boundary conditions. We believe that this independent 
reproduction of our results provides a strong validation of our technique. Moreover 
it suggests that the far-field approximations used by ITM (formulated by Fornberg 
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Comparison of experimental and Computational results. 

1980) may be used for accurate steady-state calculations of other types of bluff body 
flows. 

One also may observe the excellent agreement of the vorticity contours as computed 
by the present scheme (at T = 21) and the steady-state results of Dennis et al. 
(figure 16). The drag coefficient asymptotes to a value which is in excellent agreement 
with the results of their steady-state calculations (figure 13). As was noted above 
however, the drag coefficient is a global quantity for the steady-state calculations 
whereas the length of the recirculating bubble is a local quantity of the flow. 

5.1.4. Re = 126 
In figure 17 we present the vorticity field and the streamlines of the unsteady flow at 

Re = 126. The topology of the flow does not differ significantly from that observed at 
lower Re numbers although the secondary vorticity is more active due to the stronger 
vortices being formed at the tips of the plate. The results of the present computations 
at Re = 126 for the streamlines are shown in figure 18 along with the streaklines 
of Taneda & Honji (1971) for Re = 125.4. Note that the present experimental and 
computational results are in closer agreement than the corresponding results shown 
in figure 9. This may be attributed to the smaller blockage ratio in the experiments 
of Taneda & Honji ( b  = 0.026) compared to that of Dennis et al. ( b  = 0.15). 

In figure 19 we present the length of the recirculating bubble as computed by the 
present scheme and compare it with the experimental results of Taneda & Honji (197 I )  
and the computational works of Tamaddon-Jahromi et al. (1994), Lava1 & Quartapelle 
(1990) and Yoshida & Nomura (1985). These computations are mostly concerned with 
the long-time behaviour of the flow, when shedding has been established. 

The computational results are in good agreement with the experimental ones 
although deviations seem to appear at later times. It  is suspected that this is a mani- 
festation of three-dimensional effects and the onset of asymmetry in the experiments. 
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flat plate at Re = 1000. 

5.1.5. Re = 1000 
This is the highest Re for which computations were carried out in this study. The 

increase in the Reynolds number requires a larger number of computational elements 
to efficiently resolve the steeper gradients of the flow. This implies a respective decrease 
in the time step of the present simulations. A time step of 0.005 was used along with 
a panel size of 0.001 resulting in approximately half a million computational elements 
at the end of the simulations. In figure 20 we present the evolution of the vorticity 
field and the streamlines. Two distinct almost circular vortices are formed behind the 
plate inducing a strong secondary flow. The secondary vorticity is displaced further 
towards the outer edge of the flow while the feeding vortex layer of the vortices is 
thinned out. The initial primary vortices that were formed reside in the centre of the 
recirculating region behind the plate acting as if almost separated from the rest of 
the flow. 

Note that unlike the lower Re cases, the secondary vorticity in the back of the plate 
remains stronger at later times and a thin layer is swept away from the back of the 
plate due to the influence of the primary vortex. This secondary vorticity layer is then 
separating along the primary shear layer. As the strength of the primary vortex is 
reduced by diffusion the strength of the secondary vorticity and its departure from the 
lee of the plate is diminished. This interplay of primary and secondary voticity might 
have implications for the inviscid modelling of flows with sharp separation points. 
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fix Re = 20, 40, 126. 1000. 

In figures 21 and 13 we present the evolution of the wake bubble and the drag 
coefficient for this and all other Re that we studied. It is interesting to observe that 
unsteady evolution of the drag coefficient exhibits a regular monotonic behaviour with 
respect to the Reynolds number (more obvious at later times). However such obvious 
behaviour is not evident in the evolution of the length of the wake. However the 
results for Re = 1000 and 126 are not steady-state results, so they describe transient 
behaviour of the wake bubble. One may infer that the drag coefficient assumes its 
steady-state value much faster than the respective length of the recirculating bubble. 

5.2. The uniformly accelerated ,flat plate 
In this section, we present results regarding a plate that is uniformly accelerated with 
an acceleration (a)  normal to the direction of the flow. The dimensionless parameters 
of the flow are 

* Ll t' u L' 
T = -  x = -  L '  ,, 2 ' 

2Fh * e^, 
CD = ___ 

and the drag coefficient of the plate is non-dimensionalized as 

(LI t f ) ?  L 

(44) 

(45) 

where t f  is an arbitrary dimensional time. In order to compare the results of the 
various simulations we chose rf so that T,? = 25 without any loss of general- 
ity. The viscosity for our computation was chosen to be v = 0.025, the time step 
was such that 200 time steps were taken to reach T* = 1.0, the size of the vor- 
tex particles was chosen to be f = (2vBt)'I2 and M = 0.9L/c panels were used 
to discretize the body. We conduct a systematic study of  the flow and compare 
our computational results with the experimental work of Taneda & Honji (1971). 
We discuss the underlying mechanisms of the flow and infer scaling laws for the 
drag coefficient and the length of the recirculating bubble. Vorticity contours of 
(0, +50, +_loo, f1.50, f200, f400, f600,. . .) are presented for 0 < T* d 1, and con- 
tours of (0, k50, f1.50, _+300, f600,4900, fl200, ' . .) are presented for later times. 
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FIGURE 22. Early time evolution of the vorticity field for an accelerated flat plate (a = 19.9375). 
Vorticity field at T’ = 0.04, 0.16, 0.36, 0.64 (a-d) 

5.2.1. a = 19.9375(cc = 0.319 x lo5) 
The early-time behaviour of this flow is shown in figure 22. At T* = 0.04 one 

may observe a symmetrical vortex being formed at the tip of the plate. Subsequently 
this vortex is convected downstream and induces secondary vorticity at the back of 
the plate. As the plate continues to accelerate, stronger vorticity is shed from the 
tips of the plate while the initial vortex sheet rolls up (figure 23) to the rear of 
the plate. Simultaneously diffusion acts to spread both the separating shear layers 
and the rolled-up vortex sheet so that they eventually coalesce ( T  = 16). One may 
observe then the formation of centres of vorticity along the primary shear layer. 
As the flow evolves, more centers of vorticity form along the primary shear layer 
and are convected into the recirculation zone where they dissipate. In figure 24 we 
compare the results of the present simulations for the length of the recirculating 
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FIGURE 23. Evolution of the vorticity field for an accelerated flat plate ( a  = 19.9375). Vorticity field 
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bubble with corresponding experimental results of Taneda & Honji (1971). There is 
good agreement in the initial stages of the flow that deteriorates with time. 

5.2.2. a = 100(a = 1.6 x lo5) 

As the acceleration of the flow increases one may observe a more rapid development 
of the vorticity field (figures 25 and 26) than in the previous case. As before, a 
symmetric vorticity distribution exists around the tips of the plate in the very early 
stages of the flow. The primary shear layer rolls up faster and induces secondary 
vorticity the back of the plate at T = 0.16. However, as the plate accelerates, a new 
vortex sheet being shed from the plate is already starting to roll up into centres of 
vorticity at T = 1. It can be observed in the later pictures of the flow that as the 
primary vortex layer rolls up and convects away from the high-velocity region of the 
flow, diffusion acts to spread it out in the recirculation zone. The proximity of this 
primary vortex to the main shear layer, and its interaction with the secondary vorticity 
to the back of the plate, seems then to induce a Kelvin-Helmholtz-type instability 
in the primary shear layer, thus forming discrete centres of vorticity along it. At the 
same time, as new vortex sheets of higher strength are being formed at the tips of 
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the plate the phenomenon reappears on a different scale. Eventually then centres 
on vorticity appear all along the shear layer. We stopped the simulations for this 
flow at T* x 25 when roundoff errors accumulated, thus inducing asymmetry in the 
flow. The streamlines of the flow are presented in figure 27. One may observe slight 
undulations along the separating streamline and a region of relatively low velocity in 
the recirculating zone of the plate. Compared to the contours of the vorticity field the 
instantaneous streamlines exhibit a milder variation. This could possibly challenge 
experimental works that deduce the vorticity of the flow from the instantaneous 
streaklines using techniques such as particle image velocimetry. 

5.2.3. a = 151.875(a = 2.43 x 10') 

In figures 28 and 29 we present the evolution of the vorticity field of this flow. The 
evolution of the flow is quite similar to the a = 100 case. One may observe however 
that the centres of vorticity remain on the periphery of the recirculating zone longer, 
while a large low-vorticity region is formed in the centre. In figure 24 we compare the 
length of the recirculating bubble as computed by the present simulations with the 
experiments of Taneda & Honji (1971). Again good agreement is observed for earlier 
times while the results deviate for later times. 

5.2.4. a = 415 ( X  = 6.64 x lo5) 
As the acceleration is increased the primary vortex becomes stronger and forms 

closer to the plate (figure 30). This has as a result the formation of centres of vorticity 
along the separating shear layers near the tips of the plate, One may observe a dense 
array of discrete centres of vorticity springing off the tips of the plate even at earlier 
times. Further from the tips of the plate the distance between the centres of vorticity 
grows larger. This change in the wavelength may be explained by examining the 
source of the straining flow that triggers the Kelvin-Helmholtz-type instability. Near 
the tips of the plate vorticity of opposite sign is extracted from the back of the plate. 
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FIGURE 25. Early time evolution of the vorticity field for an accelerated flat plate (a = 100). 
Vorticity field at T’ = 0.04, 0.16, 0.36, 0.64 (a-d). 

Hence there is a higher velocity difference along the sides of the separating shear 
layer near the plate tips than there is further away. Moreover the shear layer that is 
formed near the tips of the plate has not been affected significantly by diffusion hence 
it is stronger and shorter than the respective vortex sheet downstream. This implies 
shorter wavelength Kelvin-Helmholtz waves being triggered by the straining flow. As 
vortices travel downstream (figure 31) diffusion acts to reduce their strength so that 
they have a weaker influence on the shear layer. Moreover the shear layer has been 
thickened by the effects of viscosity resulting in longer unstable wavelengths. Note 
the similarity exhibited by the instantaneous streamlines of the flow (figure 32) with 
the respective streamlines for a = 100 (figure 27). 

5.2.5. a = 1050(a = 16.8 x lo5) 
This is the highest rate of acceleration considered for the flat plate and is by far the 

most interesting one. The breaking of the vortex sheet into distinct vortices is even 
more pronounced in this case. In figure 33 one may observe the early-time behaviour 
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FIGURE 26. Evolution of the vorticity field for an accelerated flat plate ( a  = 100). Vorticity field at 
T* = 1.0, 4.0, 9.0, 16.0, 25.0 (a-e). 

of the flow. A strong primary vortex forms on the back of the plate inducing a strong 
secondary vorticity region. One may observe the immediate breakup of the shear 
layer (T* = 0.36) and at the same time the process of shedding discrete vortices from 
the tips of the plate. Thin, strong shear layers are formed at the tips of the plate 
that are subjected to a Kelvin-Helmholtz-type instability. In figure 34 we observe the 
evolution of the flow at later times. Further away from the tips of the plate larger 
wavelengths are observed as the shear layer is thicker and the destabilizing strain 
flow is of smaller magnitude. Stronger variations are exhibited by the streamlines of 
the flow (figure 35) giving vorticity rolls along the primary shear layer. As evidence 
for the accuracy of our simulations note that the flow remained symmetric for all 
the times presented herein, although no symmetry constraint was imposed on our 
calculations. 

5.3. Drag forces: bubble length 
Uniformly accelerated flows have been known to exhibit similarity when time is 
scaled as in (44). This similarity was first studied experimentally by Noca (1990). He 
presented streaklines behind flat plates at a 45" angle of attack, exhibiting remarkable 
similarity of the flow at corresponding instances of time. 

For the flat plate normal to the flow, the results of the simulations demonstrate 
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FIGURE 28. Early time evolution of the vorticity field for an accelerated flat plate (u  = 151.875). 
Vorticity field at T' = 0.04, 0.16, 0.36, 0.64 (a-d). 

and quantify this flow similarity. In figures 36 and 37 we present the evolution of the 
length of the recirculating bubble and the drag coefficient of the plate for the above 
studied accelerations. Our results on the length of the recirculating bubble seem to 
collapse to a single curve, independent of the rate of acceleration. Note however that 
the present computations do not seem to coincide with the power law proposed by 
Taneda & Honji (1971). 

A striking collapse of the data is observed for the drag coefficient of the flow. 
The drag coefficient as normalized in (45) is independent of the acceleration of the 
flow (especially for earlier times). This may be attributed to the inviscid development 
of the flow and the similarity in the formation of the vortical centres along the 
separating shear layers. Moreover, the data collapse demonstrates the consistency of 
the present simulations and implies that T* is the 'correct' non-dimensional time and 
the computed Cd the 'correct' drag coefficient. 
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5.4. Discussion 
Our simulations of a uniformly accelerating plate reveal the systematic development 
of small centres of vorticity along the large-scale primary vortex sheets. Such vortices 
have been observed (figure 38) in related experimental works (Pierce 1961; Pullin & 
Perry 1980; Lian & Huang 1989). In a related flow Tsai & Yue (1993) observed the 
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FIGURE 29. Evolution of the vorticity field for an accelerated flat plate ( a  = 151.875). Vorticity field 
at T* = 1.0, 4.0, 9.0, 16.0, 25.0 (a-e). 
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FIGURE 30. Early time evolution of the vorticity field for an accelerated flat plate ( a  = 415). 
Vorticity field at T* = 0.04, 0.16 (a,b). 
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formation of discrete centres of vorticity in the separating shear layer of a flat plate 
due to its interaction with a free surface. However, there is a debate as to whether this 
vortex formation is due to an inherent instability of the flow or to perturbations caused 
by the experimental apparatus. Pierce (1961) and Lian & Huang (1989) support the 
instability idea while Pullin & Perry (1980) interpret this behaviour as an apparatus- 
induced neutrally perturbed flow. The stability of an evolving two-dimensional sheet 
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FIGURE 33. Early time evolution of the vorticity field for an accelerated flat plate (a  = 1050) 
Vorticity field at T* = 0.04, 0.16, 0.36, 0.64 (a-d). 

has also been studied theoretically by Moore (1976). He applied his theory to a tightly 
wound, time-decaying, spiral vortex sheet that he showed to be stable. 

In the present direct numerical simulations, perturbations may be introduced due to 
numerical errors. As no symmetry is imposed in our simulations, experience dictates 
that roundoff errors would manifest themselves by triggering an asymmetry to the 
flow. Indeed, such behaviour is observed at long times and higher accelerations. Also, 
the developing shear layers of our simulations increase in strength with time whereas 
Moore’s analysis deals with a tightly wound spiral vortex sheet whose strength 
decreases with time. Note that Moore’s model is more related to the vortex sheet 
roll-up observed behind an impulsively started plate, for which indeed no instability 
was observed. 

We believe then that the formation of the vortex centres along the separating 
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FIGURE 38. Photographic evidence of the shear layer instability, for a uniformly accelerated bluff 
body flows. (a )  Flow past a uniformly accelerating wedge with CL = 2.06 x lo9 at T* = 3.0 (Pierce 
1961). ( b )  Flow past a uniformly accelearting plate with c( = 24.51 x lo6 at T* = 4.37 (Lian & 
Huang 1989) (c) Present computations for c1 = 1.68 x lo6 at T* = 6.25. 
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shear layer is an intrinsic behaviour of the flow due to a Kelvin-Helmholtz-type 
instability. The wavelength and the location of the onset of this instability depend 
on the strength of the vortex sheet, its variable thickness (due to diffusion) and the 
variable shear across it (due to the continuous acceleration, the secondary vorticity 
and the primary vortex roll-up). The instability along the primary shear layer is also 
driven by the interaction of the primary and secondary vorticity at the tips of the 
plate. This interaction has an oscillating character that induces perturbations to excite 
the various modes of the observed Kelvin-Helmholtz instabilities. A confirmation of 
the inviscid evolution of the flow along the separating layers is provided by the scaling 
of the drag coefficient and the length of the recirculating bubble. 

6. Conclusions 
We have presented a computational study of the unsteady flow behind a zero- 

thickness flat plate started impulsively or uniformly accelerated normal to the flow. 
For the impulsively started plate the present results complement related experi- 

mental works, while providing quantities such as the vorticity of the flow field and 
the forces experienced by the body. The development of the flow is similar for all 
the Reynolds numbers that were simulated. The separating shear layer rolls up into 
a vortex in the lee of the plate, inducing initially a region of secondary vorticity. 
Diffusion acts to increase the width of the shear layer and reduce the strength of the 
vortex, resulting in a stable configuration. 

A different behaviour is observed for the separating shear layer of a uniformly 
accelerated plate. The continuous increase of the shear flow overcomes the effects 
of diffusion, increasing the strength of the separating shear layer and inducing a 
Kelvin-Helmholtz-type instability. The wavelength and the onset of this instability 
depend on the acceleration of the plate. The present simulations are the first to 
confirm related experimental evidence on the formation of vortex centres along the 
separating shear layers of an accelerating flat plate. Such undulations have been 
attributed to experimental defects, but the present simulations suggest that this is an 
intrinsic behaviour of the flow. Finally, the drag coefficient of the plate is shown to 
scale due to the similarity in the inviscid development of the flow. 
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